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1. 

In a recent article by Bert [1], a very simple relationship between fundamental
natural frequency and maximum static deflection for linear systems has been
proposed. The formula is

v1 =C(g/d)1/2, (1)

where C is a dimensionless constant depending on the parameters of the system,
g is the acceleration due to gravity, and d is now the maximum static deflection
under gravity. Xie [2] extended this simple relationship to several types of building
structures namely rigid frame, wall-frame and bracing frame in his investigation.
He carried out static analyses on these structures with various heights using the
finite element method and applied a fraction of the gravity loads in the horizontal
direction to find maximum static deflection. Xie obtained the dimensionless
constant C, which varies between 1·12 and 1·21, by comparing his results with the
finite element dynamic analyses. The purpose of this letter is to establish the
relationship between fundamental transverse natural frequency and structural
parameters by combining the coupled-wall theory and equation (1) to cover a wide
range of structures with uniform and symmetrical plans throughout their height.

2. 

Wall-frame, rigid frame, braced frame, coupled shear walls and a combination
of them in a uniform symmetrical structure can be considered as shear–flexure
cantilevers whose deflection can be estimated accurately by coupled-wall theory.

The differential equation governing the translational motion of shear–flexural
cantilevers can be approximated as following [3]

d4y/dz4 − (ka)2 d2y/dz2 = (1/EI)[w(z)− a2(k2 −1)M(z)]; (2)

where, y is the lateral deflection, w(z) is the intensity of the static lateral distributed
loading, M(z) is the accumulated external moment at the co-ordinate z from the
base of the structure.

The structural characteristic parameters: a2 and k2 are as follows

a2 =GA/EI, k2 =1+EI/S(EAc2)j =1+EI/EAc2. (3, 4)
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The parameter k2 accounts for the effect of the axial deformations of the columns
and walls on the overall flexure. The racking shear rigidity GA, and the flexural
rigidity EI contributed by the bents are

GA=S(GA)j , EI=S(EI)j . (5, 6)

(EAc2)j for a bent is the flexural rigidity of the column and wall sectional areas
acting about their common centroid.

In the case of a shear–flexure cantilever on a rigid base subjected to a uniformly
distributed gravity load of intensity mg per unit height acting horizontally, the
maximum lateral deflection on the top of the structure determined from differential
equation (2) and boundary condition is given by

yH =(mgH4/8EI)FyH , (7)

where

FyH =1−
1
k2 $1−

4
(kaH)2 +

8
(kaH)4 cosh kaH

(1+ kaH sinh kaH−cosh kaH)%.
(8)

Substituting the maximum static deflection yH into equation (1), the fundamental
transverse frequency can be represented as

fy1 = (D'/zFyH )(1/H2)zEI/m (9a)

in which D'=z2C/p. When GA approaches zero, FyH approaches 1 and the
shear–flexural cantilever becomes a pure flexural cantilever. Equation (9a) will
have the same form as the fundamental natural frequency of a cantilever beam
in transverse vibration with an exact solution of the factor D'=0·5595 [4]. This
can be written as

fy1 = (0·5595/zFyH )(1/H2)zEI/m. (9b)

Equation (9b) can be rewritten as

fy1 = (0·5595Dy /H2)zEI/m, (10)

where

Dy =1/zFyH (11)

The variation of the fundamental frequency coefficient, Dy , may be expressed most
conveniently in terms of the parameters k and kaH, as shown in Figure 1.

3.  

The application of the proposed method is demonstrated in the following
examples: (1) coupled shear wall building structure; (2) rigid frame building
structure. The elevations of the structures are shown in Figure 2, and their
properties are given in Tables 1 and 2 respectively.
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Figure 1. Fundamental frequency coefficients of shear-flexure cantilevers.

The racking rigidity (GA) for coupled shear walls and for rigid frames are
expressed as follows:

For coupled shear walls

(GA)=12EIbl2/b3h, (12)

where l is the distance between centroid axes of the walls, h is the storey height,
b is the clear span of connecting beam, Ib is the moment of inertia of connecting
beam and I= I1 + I2 the sum of second moment of areas of wall 1 and wall 2.

For rigid frames

(GA)=12E/h[1/S(Ic /h)i +1/S(Ib /l)j ] (13)

Figure 2. Example structures: (a) Coupled shear walls; (b) Rigid frame.
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T 1

Details of the properties of coupled shear walls

Dimensions

Height of building H (m) 60·96
Storey height h (m) 3·048
Depth of each wall, d1 = d2 (m) 6·096
Thickness of each wall t (m) 0·3048
Span between wall b (m) 2·4384
Second moment of connecting beam Ib (m4) 0·008631
Elastic modulus E (N/m2) 2·876E+10
Density of material (kg/m3) 2403

T 2

Details of the properties of a frame structure

Properties

Height of building H (m) 60·96
Storey height h (m) 3·048
Cross sectional area of beam B1, B2, B3 (m2) 0·2478
Second moment of beam B1, B2, B3 (m4) 0·007672
Cross-sectional area of column C1, C4 (m2) 0·2478
Second moment of column C1, C4 (m4) 0·007672
Cross sectional area of column C2, C3 (m2) 0·3304
Second moment of column C2, C3 (m4) 0·018185
Elastic modulus E (N/m2) 2·395E+10
Density of material (kg/m3) 2403

where Ici is the moment of inertia of the column on line i; h=storey height; Ibj

and lj represent the moment of inertia and span of the beam in bay j. The girders
and columns are taken across on storey level of the bent.

A comparison of the fundamental transverse natural frequency of the two
example structures obtained using the proposed method and those obtained using
the finite element method (ABAQUS software package) is shown in Table 3. It
can be seen that good agreement between the results has been achieved.

T 3

Comparison between results of proposed analysis and those from finite
element analysis

Proposed method ABAQUS FEM
ZXXXXCXXXXV ZXXXXCXXXXV

Methods Coupled walls Frame Coupled walls Frame

Fundamental freq. (Hz) 2·07 0·8889 2·03 0·8833
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The proposed method is also applicable to multi-bent structures which may be
comprised of different types of structural components.

4. 

The relationship between fundamental transverse natural frequency and
structural parameters of uniform high rise building structures has been established
by using Bert’s formula (Equation (1)) and coupled wall theory. This enables an
accurate prediction of the fundamental transverse natural frequency by hand
calculation for different types of building structures. The proposed method is not
recommended for the determination of the fundamental natural frequency for
structures with less than 6 storeys. This is because the governing differential
equation, equation (2), has been found to give good approximation for tall
buildings.
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